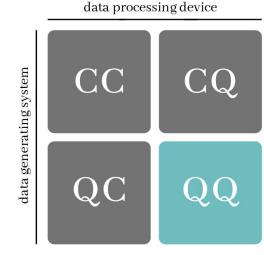
## Overview of Quantum Machine Learning

QCB Fall 2022



C - classical, Q - quantum

Why it works?
How it works?
When it works?

# Let NATURE do the work

Why it works? (Part 1/2)

# Statistical Mechanics + Machine Learning $\Rightarrow$ QML?

### Brief Stat Mech Intro

- Have a system of particles, can either be in spin-up (Energy = E) and spin-down (Energy = 0) states
- Place the particles in an environment with thermal energy U0 and temperature T
- Find the average energy of the system

## Derivation (Kittel, Thermodynamics)

Using function g (gives the number of arrangement to achieve a certain energy) and entropy (σ = ln(g))
 → Find the probability ratio of finding a state with energy E versus 0

 $\frac{P(\varepsilon)}{P(0)} = \frac{g(U_0 - \varepsilon)}{g(U_0)} = \frac{\exp[\sigma(U_0 - \varepsilon)]}{\exp[\sigma(U_0)]}.$ 

• Taylor expand  $\sigma$  because E is small w.r.t. U

 $\sigma(U_0-\varepsilon)\simeq\sigma(U_0)-\varepsilon(\varepsilon\sigma/\varepsilon U_0)=\sigma(U_0)-\varepsilon/\tau$ 

• Simplify the probability ratio

 $P(\varepsilon)/P(0) = \exp(-\varepsilon/\tau).$ 

• Find the expectation value of the energy

$$\langle \varepsilon \rangle = \sum_{i} \varepsilon_{i} P(\varepsilon_{i}) = 0 \cdot P(0) + \varepsilon P(\varepsilon) = \frac{\varepsilon \exp(-\varepsilon/\tau)}{1 + \exp(-\varepsilon/\tau)}$$

### Brief ML Intro (1–layer NN Classifier/Logistic Regression)



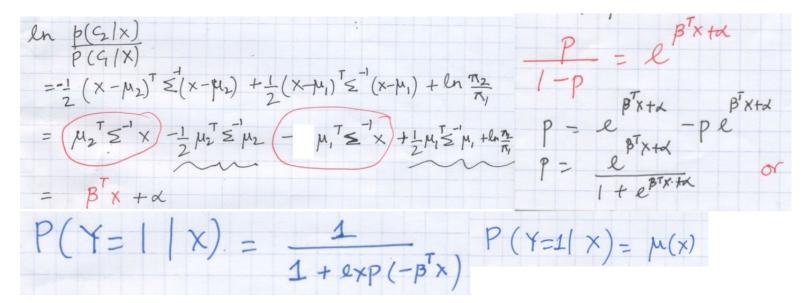
- Given input **x**, want to output a result **y** that matches the truth values
- Approach
  - $\circ$  Initialize (pseudo)random vector  $m{eta}$
  - Compute an output *y***-pred** (or Oi) by  $\beta \cdot x$
  - If more than one layers, then repeat the computation above with non-linear function in between
  - Compute a loss using the Cross Entropy Function
    - $L = -\sum_{input data} (y_i \ln O_i + (1-y_i) \ln(1-O_i))$
  - $\circ$  Update  $\beta$  by using Gradient Descent

$$eta_i \leftarrow eta_{i-1} - lpha \cdot 
abla L(eta_{i-1})$$

• Stop when *L* is minimized (or  $\beta$  no longer changing)

### Derivation (Malik, CS 189)

- Assume many input samples  $\rightarrow \mathbf{x}$  is Gaussian
- Output two probabilities P(y=+1|x) and P(y=-1|x), decide y based on them
- Want to distinguish P(y=+1|x) and P(y=-1|x) = 1 P(y=+1|x) as much as possible  $\rightarrow$  maximize  $P(y=+1|x)/(1 - P(y=+1|x)) \Leftrightarrow \max \ln\{P(y=+1|x)/(1 - P(y=+1|x))\}$



P(y=+1/x,

So should we guess y=+1 for × LO -1 for × DO

(y=-1/x)

8

## Derivation (Malik, *CS* 189)

Redenote P for simplicity 

01.1.1

$$P(Y=|X) = \frac{1}{1 + exp(-B^T X)} P(Y=1|X) = \mu(X)$$

Calculate the case for general P(y|x) and total probability for n samples - 11 July 11 11 1-Y

$$P(y_{1}, -y_{n}) = \mu(x_{1}) (1 - \mu(y_{1}))$$

$$P(y_{1}, -y_{n}) = \prod \mu_{i} (1 - \mu_{i})^{(1 - y_{i})}$$

- Maximize the log of probability for simpler calculation  $(OID) = \ge y_i \ln \mu_i + (i - y_i) \ln (i - \mu_i)$
- Flip the sign and turn max into min

$$L = -\sum_{input data} (y_i \ln O_i + (1-y_i) \ln(1-O_i))$$

## Comparison

$$\begin{split} & (\varepsilon) = \sum_{i} \varepsilon_{i} P(\varepsilon_{i}) = 0 \cdot P(0) + \varepsilon P(\varepsilon) = \frac{\varepsilon \exp(-\varepsilon/\tau)}{1 + \exp(-\varepsilon/\tau)} \\ & U \equiv \langle \varepsilon \rangle \\ & 1 - U/\varepsilon = ? \end{split}$$

### Energy in Quantum?

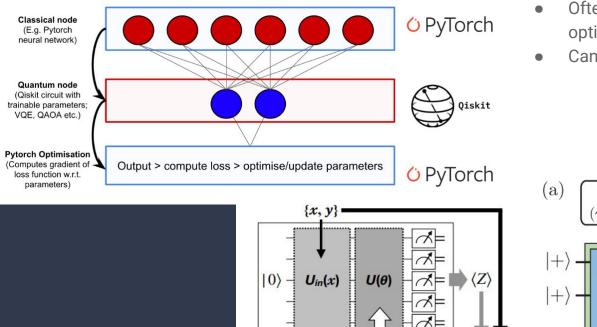
 $\hat{
m H}\ket{\Psi}=E\ket{\Psi}$ 

- Minimal Energy?
- $\Rightarrow$  Ground State!
- $\Rightarrow$  How to get there?

# Variational Algorithm & Quantum Annealing

How it works? (Part 1/2)

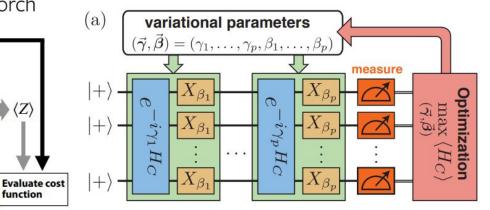
## Variational Algorithm



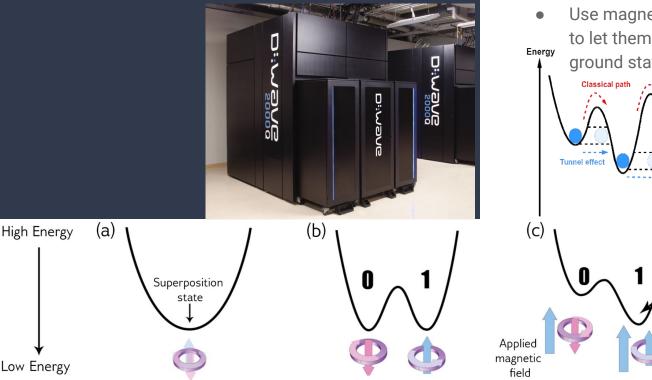
Update  $\theta$ 

parameters

- Trainable parameters are the rotation degrees in the gates
- Hyperparameters include the circuit depth, rotation axis and entanglement scheme
- Often use a classical device to tune and optimize the parameters
- Can be viewed as a layer in NN



## Quantum Annealing



Device-dependent and task-specific

Solution

Higher

probability

of lower state

- Sometimes compared with Photonics Circuits
- Does not use gates
- Use magnetic spins as qubits and use fields to let them evolve in time and maintain in the ground state (adiabatic process)



Solution

Adiabatic evolution

## Other methods

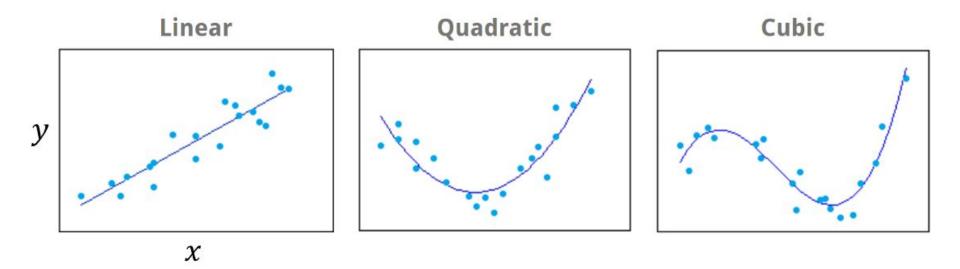
- Single-shot solution to linear system  $\rightarrow$  HHL Algorithm
- Quantum Boltzmann Machine → Two layer NN but uses adiabatic/annealing processes to minimize the energy/loss

# Everything can be LINEAR

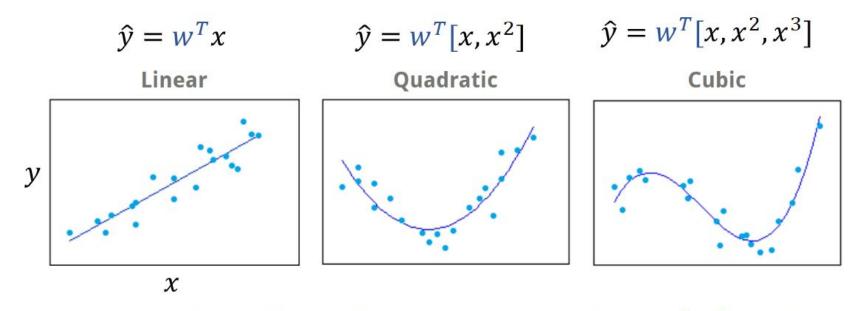
Why it works? (Part 2/2)

# Neural Networks rely on Nonlinearities?

## Can you use a linear model?



### Can you use a linear model?



If  $x = [x_1, x_2]$ , then for quadratic features, we get  $[x_1, x_2, x_1^2, x_2^2, x_1x_2]$ , etc.

## SVM & PCA

How it works? (Part 2/2)

### Quantum Support Vector Machine (SVM)

- Simplest supervised machine learning algorithms:
  - Linear SVMs
  - Perceptrons
- Quantum SVM  $\rightarrow$  canonical example for QML techniques
  - 1. Data input (qRAM or other subroutine)
  - 2. Process data with Quantum Phase Estimation and Matrix Inversion
- Operations to construct hyperplane take log N

### **Quantum Principal Component Analysis**

- Principal Component Analysis used to compress our data's representation
- Simplest form  $\rightarrow$  diagonalizing the covariance matrix:

$$C=\sum_{k}e_{k}c_{k}c_{k}^{\dagger}$$

- Performing qPCA on classical data:
  - Use qRAM (quantum Random Access Memory) classical data vector gets mapped to quantum state (v<sub>i</sub> → |v<sub>i</sub>⟩)

#### Before we continue... What is qRAM?

- We know Random-Access Memory (RAM) uses "*n* bits to randomly address  $N = 2^n$  distinct memory cells" [GLM08]
- quantum Random-Access Memory (qRAM) theoretically uses "n qubits to address any quantum superposition of N memory cells" [GLM08]
  - Large qubit-overhead  $\implies$  Not feasible in near-term
  - Costly memory call

#### Quantum Principal Component Analysis (Cont.)

- Suppose vectors live in *d*-dimensional space so that
   d = 2<sup>n</sup> = N
- Principal components:

$$v=\sum_k v_k c_k$$

- Classical time complexity  $\rightarrow \mathcal{O}(d^2)$
- Quantum time complexity  $\rightarrow \mathcal{O}[(\log N)^2]$ 
  - Quantum state has log d qubits

# How much faster anyways?

| Method                                             | Speedup  | Amplitude amplification | HHL             | Adiabatic | qRAM     |
|----------------------------------------------------|----------|-------------------------|-----------------|-----------|----------|
| Bayesian<br>inference <sup>106,107</sup>           | O(√N)    | Yes                     | Yes             | No        | No       |
| Online<br>perceptron <sup>108</sup>                | O(√N)    | Yes                     | No              | No        | Optional |
| Least-squares fitting <sup>9</sup>                 | O(logN)* | Yes                     | Yes             | No        | Yes      |
| Classical<br>Boltzmann<br>machine <sup>20</sup>    | O(√N)    | Yes/No                  | Optional/<br>No | No/Yes    | Optional |
| Quantum<br>Boltzmann<br>machine <sup>22,61</sup>   | O(logN)* | Optional/No             | No              | No/Yes    | No       |
| Quantum<br>PCA <sup>11</sup>                       | O(logN)* | No                      | Yes             | No        | Optional |
| Quantum<br>support vector<br>machine <sup>13</sup> | O(logN)* | No                      | Yes             | No        | Yes      |
| Quantum<br>reinforcement<br>learning <sup>30</sup> | O(√N)    | Yes                     | No              | No        | No       |

# When it works?

Well, obviously, when you have a usable quantum computer...

### Applications

- Medical Diagnoses
- Logistical Optimizations
- Image Processing
- Speech Recognition
- Audio/Video Generation
- Recommender Systems
- Computational Sciences
- Controlling Hardwares
  - [Google Quantum Advantage] Learning from Experiments
- Etc...

### Potential Areas to Explore

- Unsupervised Learning  $\rightarrow$  Clustering algorithms
- Interpolation Regime  $\rightarrow$  Generalizing well with random labelings?
- Adversarial Attacks → Robust against noise/wrong labels?
- Converging time  $\rightarrow$  How many samples are needed to train?
- Performance on various devices  $\rightarrow$  Can device impact performance?
- Representational Learning  $\rightarrow$  More concise hidden representations
- Denoising models  $\rightarrow$  Can model find the most important parts of data?
- Regression Models  $\rightarrow$  Not a label, but a continuous number
- Link vs global classification  $\rightarrow$  One task better than another?
- Deep learning  $\rightarrow$  NLP/CV?
- Encoding Schemes  $\rightarrow$  Best way to represent data?
- Etc...

### TODO

- Fill out the Survey Form
- Reminder: written project proposal with literature reviews and methods is required for re-joining the program next semester (likely 2 decal/course units)
- Thought Experiment: How many qubits do you need to represent a 32-bit floating point number (assume between 0 and 1)?